

Irrigation Pylons: Project Proposal

Nico Garcia, Tyler Dale, Ellen Halverson, Kenneth Harkenrider, Trenton Kuta

Introduction: Flood Irrigation

- Common in Southwest
- Water crops by flood
 - Diverted river water
 - Canals, ditches, valves
- Process Automation
 - Moisture SensorsWireless Control
- Project: Irrigation Pylons

Problems with Flood Irrigation

- Time Consuming and Labor Intensive
 - Up to 36 hours
 - Water pressure varies needs constant checking
- Risk of Overwatering
 - Flooding nearby properties/roads property damage
 - Water is precious minimize waste

Proposed Solution: Irrigation Pylons

- Water Sensing Pylons
 - Determine advancement of water
 - Communicate with Hub
- Hub
 - Informs farmer of progress via app
 - Controls Valves
- Valves
 - Starting/Ending Irrigation Remotely

Demonstrated Features

- Water Detecting Pylons
 - Separate soil and other debris
 - Measure the amount of water present
 - After threshold broadcasts status
- Communication to central hub
 - Pylons transmit data to central hub
 - Central hub collects status of pylons
 - Central hub communicates to valve to open/close

Demonstrated Features

- Central hub controlled valve
 - Stop valve used to control output
 - User has option to open and close valve
- User Interface
 - Updates with status of pylons in the field
 - Allows user to open stop valve to start process
 - Allows user to close stop valve when is best for the field.

Available Technologies

- Wireless Communication
 - Wi-Fi
 - Bluetooth
 - ZigBee
 - 6LoWPAN
- Water-sensing Devices
 - Resistive
 - Capacitive
 - Neutron Interaction

Available Technologies

- Valves/Motors
 - Retrofit or Replace
- Power
 - Solar Battery System for Pylons
 - AC for Central Hub
- User Interface
 - iOS/Android App
 - MatLab

Engineering Content

- Three Subsystems
 - Valve Control, Pylons, Central Hub
 - Individually constructed/tested
- Integration
 - Communication between subsystems
 - Communication between hub and farmer
- Power systems

Engineering Content

- Valve Control
 - Valve on/off
 - Recognize state
- Pylons

UNIVERSITY OF NOTRE DAME

- Read the sensor
- Turn off
- Central Hub
 - Wireless signal to user interface

Conclusion

- Potentially Marketable Product
- Useful for Agriculture
- Combination of Engineering Skills
 - Internet of Things, Sensor Appropriation, Hardware Construction/Design
- Ideal for Senior Design